At the Makery lately, Brandon and I [with some help] have been working on a CNC Hot-wire Foam cutter quite a bit like this one. Â Ours is going to be a bit larger, capable of slicing up a 2×4 foot piece of foam (actually, the X is more like 5 feet than 4). For our Z axis, we are using a salvaged set of rails including a rack and pinion setup, but our X axis is entirely homebrew.
I’d initially lobbied for a belt setup similar to the X-axis on a Prusa Mendel, but Brandon objected on grounds of the cost for a 10 foot piece of belting. Â He proposed instead using a piece of all-thread as a rack, and a curved gear as the pinion. Â That was fine, but seemed like the gear would cost more than the belting. In the end, we decided to try making a gear, in the same way that extruder rollers are made for the 3d printers: Hobbing.
Tonight, I got around to trying to make the gear.  We’d settled on 3/8-16 all-thread, as it’d be sufficiently beefy as to not bend with a gear pressing against it, and to not sag under the weight of a mostly unsupported 5 foot span.  I grabbed a piece of (approximately) 1″ round aluminum from the scrap bin, and drilled a 3/16″ hole through.  I bolted the cylinder to a bearing I had lying around, and chucked it into a V-jaw in the mill vise, with one end floating free.  I chucked up a 3/8-16 tap in the spindle, and set the speed as low as it goes (I around 500rpm, I think).
From there, I aligned the tap so that the centermost full thread was parallel to the bolt through the work, so that I’d be cutting only on full threads. I used the Y-axis of the mill table to position the tap along the length of the work, and advanced the work onto the spinning tap by slowly feeding the X axis as the work turned. (The work spun freely in the bearing, powered by the tap cutting into the aluminum, like when a board lifts as a wood screw is driven.)
I initially had a bit of trouble with the work flexing in the chuck (as I was only supported from one end), but I overcame this by grabbing the outboard end of the bolt with my hand and keeping the bolt parallel to the vise jaws manually.
Overall, the process worked really well. Â The tap cut nice, deep, uniform teeth into the aluminum. If I were going to do it again, I’d find a better way to hold the work (supported by both ends) in the vise; I’d also pick a better piece of material, as I didn’t bother turning the surface imperfections of out this one before I started.